BONTAC gives you a brief introduction to nad powder

BONTAC gives you a brief introduction to nad powder

NAD plays a very critical role in a wide range of cellular reactions. The conversion of NAD from its oxidized form (NAD+) to its reduced form (NADH), and back, provides the cell with a mechanism for accepting and donating electrons. NAD+/NADH plays a significant role in the reactions associated with glycolysis, oxidative phosphorylation, and fermentation. Given its importance to cell function, it would be useful if there were a means of visualizing NADH in living cells. The work presented in this case study introduces a new tool for research in cell metabolism – a NADH fluorescent sensor. NAD powder generally tend to be the raw materials of health care products, cosmetic products, functional food additives and animals’ health products.
Get A Quote

Advantages of NMNH

NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service

Advantages of NADH

NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service

Advantages of NAD

NAD:  1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products

Advantages of MNM

NMN:  1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University

about us

We Have The Best Solutions for Your Business

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.

As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.

In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.

Learn More

NAD powder manufacturing method

The preparation methods of NAD powder are mainly divided into chemical synthesis method and biocatalytic method, among which biocatalytic method includes biological fermentation method and enzyme catalysis method. Enzyme catalysis method has gradually become the mainstream direction because of its advantages of green, environmental protection and pollution-free. And then the purity of NAD powder will reach 99% after the procedure of further purifying. 

NAD powder manufacturing method

BONTAC NAD product features and advantages

1、Enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder 
2、High purity(up to 99%) and stability of production of NAD powder 
3、Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NAD powder  
4、Multiple in vivo studies show that Bontac NAD powder is safe and effective
5、Provide one-stop product solution customization service

BONTAC NAD product features and advantages

NAD powder efficacy in health

Molecules that can be taken in supplement form to increase NAD levels in the body are referred to by some as “NAD boosters.” Studies conducted over the past six decades suggest that the following are some of the many benefits associated with taking an NAD supplement:
Can Help Restore Mitochondrial Function
Helps Repair Blood Vessels —A 2018 mice study found that supplementation could aid in repair and growth of aged blood vessels. There’s also some evidence it can help manage heart disease risk factors like high blood pressure and high cholesterol.
May Improve Muscle Function — One animal study conducted in 2016 found that degenerative muscles had improved muscle function when supplemented with NAD+ precursors.
Potentially Helps Repair Cells and Damaged DNA — Some studies have found evidence that NAD+ precursor supplementation leads to an increase in DNA damage repair. NAD+ is broken down into two component parts, nicotinamide and ADP-ribose, which combine with proteins to repair cells.
May Help Improve Cognitive Function — Several studies conducted on mice have found that mice treated with NAD+ precursors experienced improvements in cognitive function, learning and memory. Findings have led researchers to believe that NAD supplement may help protect against cognitive decline/Alzheimer’s disease.
May Help Prevent Age-Related Weight Gain — A 2012 study showed that when mice fed a high-fat diet were given an NAD supplement, they gained 60 percent less weight than they did on the same diets without the supplement. One reason this may be true is that nicotinamide adenine dinucleotide helps regulate production of stress- and appetite-related hormones, thanks to its effects on circadian rhythms.
Precursors are molecules used in chemical reactions inside the body to create other compounds. There are a number of precursors of NAD+ that result in higher levels when you consume enough of them.

NAD powder efficacy in health
User Reviews

What users say about BONTAC

BONTAC is a reliable partner that we have been working with for many years. The purity of their coenzyme is very high. Their COA can achieve relatively high test results.

Front

I discovered BONTAC in 2014 because David's article in cell about NAD and NMN related showed that he used BONTAC's NMN for his experimental material. Then we found them in China. After so many years of cooperation, I think it is a very good company.

Hanks

I think green, healthy and high purity are the advantages of BONTAC's products compared with others. I still work with them to this day.

Phillip

In 2017, we chose BONTAC's coenzyme, during which our team encountered many technical problems and consulted their technical team, which were able to give us good solutions. Their products are shipped very fast and they work more efficiently.

Gobbs
Frequently Asked Question

Do you have any question?

Nicotinamide adenine dinucleotide (NAD) has several essential roles in metabolism. It acts as a coenzyme in redox reactions, as a donor of ADP-ribose moieties in ADP-ribosylation reactions, as a precursor of the second messenger molecule cyclic ADP-ribose, as well as acting as a substrate for bacterial DNA ligases and a group of enzymes called sirtuins that use NAD+ to remove acetyl groups from proteins. In addition to these metabolic functions, NAD+ emerges as an adenine nucleotide that can be released from cells spontaneously and by regulated mechanisms, and can therefore have important extracellular roles.

First, inspect the factory. After some screening, NAD companied that directly face consumers pay more attention to brand building. Therefore, for a good brand, quality is the most important thing, and the first thing to control the quality of raw materials is to inspect the factory. Bontac company actually manufacturing NAD powder of high quality with the caterias of SGS. Secondly, the purity is tested. Purity is one of the most important parameters of NAD powder. If high purity NAD cannot be guaranteed, the remaining substances are likely to exceed the relevant standards. As the attached certificates demonstrates that the NAD powder produced by Bontac reach the purity of 99.9%. Finally, a professional test spectrum is needed to prove it. Common methods for determining the structure of an organic compound include Nuclear Magnetic Resonance Spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). Usually through the analysis of these two spectra, the structure of the compound can be preliminarily determined.

The difference all comes down to the charge of these coenzymes. NAD+ is written with a superscript + sign because of the positive charge on one of its nitrogen atoms. It is the oxidized form of NAD. It’s considered “an oxidizing agent” because it accepts electrons from other molecules.
Although they are different chemically, these terms are mostly used interchangeably when discussing their health benefits. Another term you may come across is NADH, which stands for nicotinamide adenine dinucleotide (NAD) + hydrogen (H). This is also used interchangeably with NAD+ for the most part. Both are nicotinamide adenine dinucleotides that function as either hydride donors or hydride acceptors. The difference between these two is that that NADH becomes NAD+ after it donates an electron to another molecule.

Our updates and blog posts

Metabolites of Rg3 are Expected to Increase the Anti-cancer Properties of Rg3

Introduction Rare ginsenoside Rg3, an active extract from Panax ginseng, is reported to possess a wide range of pharmacological properties including anti-angiogenesis and anti-cancer, with high lipophilicity (estimated log P4) and a low water solubility at pH7.4. Nevertheless, its permeability and bioavailability are relatively low, and production procedures are complex. Remarkably, the metabolites of Rg3 have similar and even stronger activity than Rg3, opening up new opportunities for future adjuvant cancer therapy. The association of ginsenoside Rg3 and its metabolites There are two epimers of ginsenoside Rg3, which can be subsequently deglycosylated into epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The anti-cancer properties of Rg3 metabolites Angiogenesis and tumor cell proliferation are both interdependent factors in tumor progression. In terms of anti-proliferation, Rg3 metabolites, who induce S-phase arrest and necroptosis in a human triple negative breast cancer cell line MDA-MB-231 as well as G0/G1 arrest and apoptosis in human umbilical vein endothelial cells (HUVECs), are more potent than Rg3. The clinically relevant target of Rg3 metabolites are the endothelial cells. Anti-angiogenic effects are evaluated using loop formation assay. Among Rg3 metabolites, S-Rh2 is the most potent inhibitor of loop formation. VEGFR2 and AQP1 as the targets of Rh2 According to the prediction by in silico molecular docking, there is a good binding score between Rh2/PPD and the ATP-binding pocket of VEGFR2, a dominant regulator controlling both physiological and pathological angiogenesis. Through VEGF bioassay, it is discovered that S-Rh2 is a most potent anti-angiogenic candidate with allosteric modulatory action on VEGFR2 function. In addition, Rh2 and PPD have the potential of blocking AQP1 and AQP5, two members of the aquaporin family with vital roles in proliferation, migration, invasion and angiogenesis. Moreover, Rg3 is more selective for AQP1 and does not show a good binding score with AQP5. In light of this, blocking the water channel function of AQP1 may have an immediate role in inhibition of loop formation and anti-angiogenic effects of Rh2. Conclusion Metabolites of Rg3 could potentially increase the anti-cancer properties of Rg3. The application of these molecules alone or together may be potent alternatives for future adjuvant cancer therapy. Reference Nakhjavani M, Smith E, Yeo K, et al. Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3. J Ginseng Res. 2024;48(2):171-180. doi:10.1016/j.jgr.2021.05.008 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

The Molecular Mechanisms Underlying the Interaction Between NAD+/NMN and DBC1

Introduction Oxidized form of nicotinamide adenine dinucleotide (NAD+) and its precursor nicotinamide mononucleotide (NMN) have been uncovered to restore DNA repair and prevent cancer progression via the deleted in breast cancer 1 (DBC1). This research is committed to deciphering the detailed molecular mechanisms. About DBC1 DBC1 is a nuclear protein initially cloned from a human chromosome 8p21 region, which can modulate diversified targets by protein-protein interaction, contributing to various cellular processes such as apoptosis, DNA repair, senescence, transcription, metabolism, circadian cycle, epigenetic regulation, cell proliferation, and tumorigenesis. The affinity and molecular binding mechanisms between NAD+/NMN and DBC1354–396 Under the help of nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments, it is verified that both NAD+ and NMN have a binding relationship with the NHD domain of DBC1. Specifically, NAD+ interacts with DBC1354-396 through hydrogen bonds, with a binding affinity (8.99 μM) nearly twice that of NMN (17.0 μM) and the key binding sites are primarily residues E363 and D372. The vital roles of E363 and D372 mutagenesis in ligand-protein interaction The N-terminal loop of DBC1354-396 encloses the small ligand within a local space, anchoring NAD+ and NMN to the protein through key amino acid residues E363 and D372 via hydrogen bonding. Conclusion Both NAD+ and its precursor NMN can bind to DBC1's NHD domain (DBC1354–396) at key sites E363 and D372, providing novel clues for the development of targeted therapies and drug research on DBC1-associated disease including tumors. Reference Ou L, Zhao X, Wu IJ, et al. Molecular mechanism of NAD+ and NMN binding to the Nudix homology domains of DBC1. Int J Biol Macromol. Published online February 12, 2024. doi:10.1016/j.ijbiomac.2024.130131 BONTAC NAD BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. BONTAC has rich R&D experience and advanced technology in the biosynthesis of NAD and its precursors (eg. NMN), with various forms to be selected (eg. endoxin-free IVD-grade NAD, Na-free or Na-containing NAD; NR-CL or NR-Malate). High quality and stable supply of products can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

Further Exploration on the Effects of Sweetener Stevia on Human Gut Microbiota

1. Introduction The gut microbiota has long been regarded as one of the key elements contributing to the regulation of host health. Any changes in the composition or quality of the gut microbiota may have physiological consequences for the host. To determine the effect of sweetener stevia (also known as stevioside) on the gut microbiome of healthy population, the stool samples are collected from healthy participants who consume with or without five drops of the sweetener stevia twice daily. Following analyses of 16S rRNA sequencing method, no large-scale change is found in the gut microbiota post 12 weeks of consumption with stevia, hinting the safety of stevia. 2. Insignificant changes in the alpha or beta diversity following consumption of stevia It is discovered that there is no significant difference in alpha diversity (in terms of observed taxa, evenness and Shannon Index) and beta diversity (with regard to PCoA, PERMANOVA, and Jaccard Index) between groups. Nevertheless, PCoA plots shows strong separation along the x-axis. In addition, the community composition in each group is relatively even over time and equally diverse. 3. No clear difference in relative abundances of taxa At the genus level, relative abundances are similar between the control and stevia groups. No major difference is observed in relative abundances at the class, order and family level. Strikingly, butyricoccus is the only one identified taxon exhibiting significant difference at baseline, but not after 12 weeks of stevia consumption. Moreover, Collinsella and Aldercreutzia are two coprococcus species identified as explicitly different at baseline (one higher and one lower when comparing stevia vs. control), which however are significantly elevated after 12 weeks of consumption with stevia. 4. The safe intake volume of sweetener steviol glycosides  In the European Food Safety Authority (EFSA), there is a Panel on Food Additives and Flavourings (FAF), which is responsible for evaluating the safety of food additives and establishing acceptable daily intake levels for safe use. Steviol glycosides, one of the extract from stevia, is evaluated by the FAF as well. In accordance to the latest toxicological test, this sweeter is not genotoxic and carcinogenic, without any adverse effects on the human reproductive system or growing children. The expert group has set the acceptable daily intake (ADI) of steviol glycosides at 4 milligrams per kilogram of body weight per day, which is consistent with the level determined by the Joint Expert Committee on Food Additives (JECFA) administered by the US Food and Agriculture Organization (FAO) and the World Health Organization (WHO). 5. Conclusion Regular, long-term consumption of stevia does not overtly alter the composition of the human gut microbiotia. Stevia can be safe as long as the intake volume is controlled appropriately. Reference Singh G, McBain AJ, McLaughlin JT, Stamataki NS. Consumption of the Non-Nutritive Sweetener Stevia for 12 Weeks Does Not Alter the Composition of the Human Gut Microbiota. Nutrients. 2024;16(2):296. Published 2024 Jan 18. doi:10.3390/nu16020296 BONTAC Stevia/Stevioside (RD) BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team consisting of Doctors and Masters. Patent-grade Stevia Reb-D (US11312948B2 & ZL2018800019752) is availbale at BONTAC. High quality and stable supply of stevioside Reb-D can be better ensured here with the exclusive Bonpure seven-step purification technology and Bonzyme Whole-enzymatic method. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.

Get In Touch

Don't hesitate to contact with us

Sending your message. Please wait...